Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1,2-Bis[(3,6,9-trimethyl-3,12-epoxy-3,4,5,5a,6,7,8,8a,9,10,12,12a-dodecahydropyrano[4,3-j][1,2]benzodioxepin-4-yl)oxy]ethane

Liwei Jia,^a* Zhengyu Yue,^b Dongying Lv^c and Po Gao^b

^aSchool of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China, ^bSchool of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China, and ^cHeilongjiang Environmental Monitoring Central Station, Harbin 150056, People's Republic of China

Correspondence e-mail: wsjlw@yahoo.cn

Received 27 December 2011; accepted 5 February 2012

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.006 Å; R factor = 0.042; wR factor = 0.129; data-to-parameter ratio = 8.3.

The title compound, $C_{32}H_{50}O_{10}$, prepared from a mixture of α and β -dihydroartemisinin, has two β -arteether moieties linked via an -OCH₂CH₂O- bridge, so that the molecule is symmetric about the bridge. Each asymmetric unit contains a β -arteether moiety and an -OCH₂ group, which is only one-half of the molecule. The endo-peroxide bridges of the parent compounds have been retained in each half of the diolbridged dimer. The rings exhibit chair and twist-boat conformations.

Related literature

For related literature and structures, see: Brossi et al. (1988); Dominguez Gerpe et al. (1988); Flack & Bernardinelli (2000); Flippen-Anderson et al. (1989); Haynes et al. (2002); Luo et al. (1984); Paik et al. (2006); Qinghaosu Research Group (1980); Venugopalan et al. (1995); Woerdenbag et al. (1993); Yue et al. (2006). For the synthesis, see: Posner et al. (1997). For puckering parameters, see: Cremer & Pople (1975).

Experimental

Crystal data

C ₃₂ H ₅₀ O ₁₀	V = 1547.5 (8) Å ³
$M_r = 594.72$	Z = 2
Monoclinic, C2	Mo $K\alpha$ radiation
a = 18.033 (4) Å	$\mu = 0.09 \text{ mm}^{-1}$
b = 9.3127 (19) Å	T = 295 K
c = 11.061 (2) Å	$0.42 \times 0.38 \times 0.31 \text{ mm}$
$\beta = 123.58 \ (3)^{\circ}$	

Data collection

Rigaku R-AXIS RAPID diffractometer Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{\min} = 0.962, \ \tilde{T}_{\max} = 0.972$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.042$ wR(F²) = 0.129 S = 1.101614 reflections 194 parameters

1195 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.043$

6717 measured reflections

1614 independent reflections

1 restraint H-atom parameters constrained $\Delta \rho_{\rm max} = 0.20 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2118).

References

- Brossi, A., Venugopalan, B., Dominguez Gerpe, L., Yeh, H. J. C., Flippen-Anderson, J. L., Buchs, P., Luo, X. D., Milhous, W. & Peters, W. (1988). J. Med. Chem. 31, 645-650.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Dominguez Gerpe, L., Yeh, H. J. C., Brossi, A. & Flippen-Anderson, J. L. (1988). Heterocycles, 27, 897-901.
- Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.
- Flippen-Anderson, J. L., George, C., Gilardi, R., Yu, Q.-S., Dominguez, L. & Brossi, A. (1989). Acta Cryst. C45, 292-294.
- Haynes, R. K., Chan, H. W., Cheung, M. K., Lam, W. L., Soo, M. K., Tsang, H. W., Voerste, A. & Williams, I. D. (2002). Eur. J. Org. Chem. pp. 113-132.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Johnson, C. K. (1976). ORTEPH. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Luo, X. D., Yeh, H. J. C., Brossi, A., Flippen-Anderson, J. L. & Gilardi, R. (1984). Helv. Chim. Acta, 67, 1515-1522
- Paik, I.-H., Xie, S., Shapiro, T. A., Labonte, T., Amy, A., Sarjeant, N., Baege, A. C. & Posner, G. H. (2006). J. Med. Chem. 49, 2731-2734.
- Posner, G. H., Ploypradith, P., Hapangama, W., Wang, D., Cumming, J. N., Dolan, P., Kensler, T. W., Klinedinst, D., Shapiro, T. A., Zheng, Q. Y., Murray, C. K., Pilkington, L. G., Jayasinghe, L. R., Bray, J. F. & Daughenbaugh, R. (1997). Bioorg. Med. Chem. 5, 1257-1265.
- Qinghaosu Research Group (1980). Sci. Sin. (Engl. Ed.), 23, 380-396.
- Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Venugopalan, B., Karnik, P. J., Bapat, C. P., Catterjee, D. K., Iyer, N. & Lepcha, D. (1995). Eur. J. Med. Chem. 30, 697-706.
- Woerdenbag, H. J., Moskal, T. A., Pras, N., Malingre, T. M., El-Feraly, F. S., Kampinga, H. H. & Konings, A. W. T. (1993). J. Nat. Prod. 56, 849-856.
- Yue, Z.-Y., Li, S.-H., Gao, P., Zhang, J.-H. & Yan, P.-F. (2006). Acta Cryst. C62, o281-o282.

supplementary materials

Acta Cryst. (2012). E68, o661 [doi:10.1107/S1600536812005089]

1,2-Bis[(3,6,9-trimethyl-3,12-epoxy-3,4,5,5a,6,7,8,8a,9,10,12,12a-dodecahydropyrano[4,3-*j*][1,2]benzodioxepin-4-yl)oxy]ethane

Liwei Jia, Zhengyu Yue, Dongying Lv and Po Gao

Comment

Dihydroartemisinin is reported to be more therapeutically active than the parent compound. Some trioxane dimers have been found to possess high antimalarial activities (Venugopalan *et al.*, 1995) and moderate antitumor activities. (Woerdenbag *et al.*, 1993). The dihydroartemisinin triethylene glycol dimers, have strong *in vitro* growth-inhibitory activity. The dimer with β -stereochemistry at both of the lactol acetal positions is very active and highly antiproliferative (Posner *et al.*, 1997). We conclude, therefore, that the stereochemistry of the diol linkage is an important determinant for cytotoxicity. We chose the simplified analogue, the title compound, whose structure and activity have not been reported, to find out the relationship between the activity and stereo-structure. Hence, knowledge of the structure of the title compound is of interest and is reported here.

The X-ray structures of artemisinin and artemisinin derivatives have been reported, including dihydroartemisinin, artemether, artesunic acid (Luo *et al.*, 1984), both *cis*-deoxyarteether (Brossi *et al.*, 1988) and *trans*-deoxyarteether (Dominguez Gerpe *et al.*, 1988), α -artesunate, β -artesunate (Haynes *et al.*, 2002), the symmetric form of the ether dimer of deoxydihydroartemisinin (Flippen-Anderson *et al.*, 1989), the asymmetric form of the ether dimer of dihydro-artemisinin (Yue *et al.*, 2006), and the phthalate dimer (Paik *et al.* 2006). Although the endoperoxide group is an important determinant for cytotoxicity, no crystal structure of a diol dimer of dihydroartemisinin, the title compound, which is a diol dimer of dihydroartemisinin with a unique 1,2,4-trioxane peroxy bridge.

The title molecule is symmetrical. Each moiety of the dimer is totally the same, hence we describe only the asymmetric unit here.

The seven-membered ring A(C1/C2/C3/C4/C12/O2/O1) includes key peroxy linkages [O1—O2 = 1.463 (3) Å]. The length of peroxy linkages is very close to that of the ether dimer of dihydroartemisinin (1.467 (4) Å and 1.461 (3) Å respectively) (Yue *et al.*,2006). The six-membered ring B(C4/C5/C6/C7/C8/C12) has a distorted chair conformation, with Cremer & Pople (1975) puckering parameters Q, θ and φ of 0.5422 (42) Å, 8.33 (43)° and 150 (3)°. For an ideal chair, θ has a value of 0 or 180°. The six-membered ring C(O4/C10/C9/C8/C12/C11) also has a distorted chair conformation, with puckering parameters Q, θ and φ of 0.5157 (39) Å, 179.09 (44)°, 93 (20)°. Similar conformations were found in the corresponding six-membered rings of dihydroartemisinin(Luo *et al.*, 1984). The six-membered ring involving the endoperoxide bridges D(C1/O1/O2/C12/C11/O3), is best described by a twist-boat conformation, for which the puckering parameters Q, θ and φ are 0.7463 (38) Å, 85.77 (27)°, 335.6 (3)°. For an ideal twist-boat conformation, θ and φ are 90 and (60*n* + 30)° respectively. In contrast, the six-membered ring formed by the endoperoxide bridge in dihydro-artemisinin has a distorted boat conformation.

Experimental

The title compound has been prepared according to a literature procedure (Posner *et al.*, 1997). To a solution of dihydroartemisinin (297 mg, 1.05 mmol) in toluene (30 mL) at 293~298 K, glycol (0.029 mL, 0.53 mmol) was added followed by BF_3Et_2O (0.032 mL, 0.26 mmol). The reaction was stirred at the same temperature for 3 h. The mixture was then diluted with methylene chloride and was washed twice with water. The organic portions were collected, dried over (MgSO₄) and concentrated. The crude product was purified by column chromatography (flash, 7–20% ethyl acetate/petro ether) to produce the title compound (50.7 mg, 0.085 mmol, yield 17%). Crystals were obtained from ether, diffused with hexane at room temperature.

Refinement

The methyl H atoms were constrained to an ideal geometry (C—H = 0.96 Å) with $U_{iso}(H) = 1.5U_{eq}(C)$, but were allowed to rotate freely about the C—C bonds. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent C atoms at distances of 0.97 or 0.98 Å for methylene or methine groups, respectively, and with $U_{iso}(H) = 1.2U_{eq}(C)$. As there are no significant anomalous scatterers in the molecule, attempts to confirm the absolute structure by refinement of the Flack parameter (Flack & Bernardinelli, 2000) in the presence of 1614 sets of Friedel equivalents led to an inconclusive value for the parameter. Therefore, the Friedel pairs were merged before the final refinement and the absolute configuration was assigned to correspond to that determined for artemisinin (Qinghaosu Research Group, 1980).

Computing details

Data collection: *RAPID-AUTO* (Rigaku, 1998); cell refinement: *RAPID-AUTO* (Rigaku, 1998); data reduction: *CrystalStructure* (Rigaku/MSC, 2002); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008).

Figure 1

View of the asymmetric unit showing with the atom-labeling and with displacement ellipsoids drawn at the 30% probability level.

1,2-Bis[(3,6,9-trimethyl-3,12-epoxy-3,4,5,5a,6,7,8,8a,9,10,12,12a- dodecahydropyrano[4,3-*j*] [1,2]benzodioxepin-4-yl)oxy]ethane

Crystal data	
$C_{32}H_{50}O_{10}$ $M_r = 594.72$ Monoclinic, C2 Hall symbol: C 2y a = 18.033 (4) Å b = 9.3127 (19) Å c = 11.061 (2) Å $\beta = 123.58$ (3)° V = 1547.5 (8) Å ³ Z = 2	F(000) = 644 $D_{\rm x} = 1.276 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5507 reflections $\theta = 3.7-26.0^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 295 K Prism, colorless $0.42 \times 0.38 \times 0.31 \text{ mm}$
Data collection	
Rigaku R-AXIS RAPID diffractometer Radiation source: fine-focus sealed tube Graphite monochromator	Detector resolution: 10.000 pixels mm ⁻¹ ω scans Absorption correction: multi-scan (<i>ABSCOR</i> ; Higashi, 1995)

$T_{\min} = 0.962, \ T_{\max} = 0.972$	$\theta_{\text{max}} = 26.0^{\circ}, \ \theta_{\text{min}} = 3.7^{\circ}$
6717 measured reflections	$h = -22 \rightarrow 22$
1614 independent reflections	$k = -11 \rightarrow 9$
1195 reflections with $I > 2\sigma(I)$	$l = -13 \rightarrow 13$
$R_{\rm int} = 0.043$	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.042$	Hydrogen site location: inferred from
$wR(F^2) = 0.129$	neighbouring sites
S = 1.10	H-atom parameters constrained
1614 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0715P)^2 + 0.1671P]$
194 parameters	where $P = (F_o^2 + 2F_c^2)/3$
1 restraint	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.20 \text{ e} \text{ Å}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.20 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.85534 (15)	0.7920 (3)	0.4203 (3)	0.0696 (7)	
02	0.81128 (13)	0.6711 (3)	0.4401 (2)	0.0638 (7)	
03	0.76331 (14)	0.7918 (3)	0.1695 (2)	0.0578 (6)	
04	0.68018 (14)	0.8818 (2)	0.2453 (3)	0.0600 (6)	
05	0.52997 (15)	0.8430 (3)	0.1553 (3)	0.0655 (7)	
C1	0.8536 (2)	0.7701 (5)	0.2924 (4)	0.0638 (9)	
C2	0.8844 (2)	0.6212 (5)	0.2839 (5)	0.0741 (11)	
H2A	0.9172	0.6284	0.2382	0.089*	
H2B	0.9251	0.5858	0.3818	0.089*	
C3	0.8104 (2)	0.5128 (4)	0.2012 (5)	0.0694 (10)	
H3A	0.8369	0.4211	0.2041	0.083*	
H3B	0.7740	0.5427	0.1005	0.083*	
C4	0.7496 (2)	0.4904 (4)	0.2559 (4)	0.0590 (8)	
H4A	0.7836	0.4307	0.3431	0.071*	
C5	0.6668 (2)	0.4016 (4)	0.1475 (4)	0.0652 (9)	
Н5	0.6336	0.4546	0.0557	0.078*	
C6	0.6066 (2)	0.3825 (4)	0.2020 (4)	0.0700 (10)	
H6A	0.5535	0.3308	0.1298	0.084*	
H6B	0.6371	0.3255	0.2901	0.084*	
C7	0.5804 (2)	0.5246 (4)	0.2323 (4)	0.0642 (9)	
H7A	0.5408	0.5085	0.2645	0.077*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H7B	0.5485	0.5805	0.1435	0.077*
C8	0.6620 (2)	0.6093 (4)	0.3487 (4)	0.0576 (8)
H8	0.6917	0.5495	0.4362	0.069*
C9	0.6407 (2)	0.7511 (4)	0.3906 (4)	0.0634 (9)
H9	0.6964	0.7825	0.4786	0.076*
C10	0.6163 (2)	0.8677 (4)	0.2800 (4)	0.0643 (9)
H10	0.6147	0.9586	0.3231	0.077*
C11	0.6992 (2)	0.7533 (3)	0.1973 (4)	0.0505 (7)
H11	0.6452	0.7232	0.1059	0.061*
C12	0.72923 (18)	0.6310 (4)	0.3060 (3)	0.0497 (7)
C13	0.9078 (3)	0.8911 (6)	0.2898 (5)	0.0916 (15)
H13A	0.8908	0.9796	0.3125	0.137*
H13B	0.8974	0.8977	0.1950	0.137*
H13C	0.9698	0.8732	0.3603	0.137*
C14	0.6926 (4)	0.2560 (5)	0.1183 (6)	0.0950 (14)
H14A	0.7275	0.2040	0.2078	0.143*
H14B	0.7269	0.2700	0.0768	0.143*
H14C	0.6398	0.2025	0.0520	0.143*
C15	0.5731 (3)	0.7405 (6)	0.4325 (5)	0.0923 (15)
H15A	0.5162	0.7137	0.3490	0.138*
H15B	0.5684	0.8318	0.4680	0.138*
H15C	0.5924	0.6693	0.5070	0.138*
C16	0.4917 (3)	0.9620 (4)	0.0595 (5)	0.0737 (10)
H16A	0.5156	1.0498	0.1152	0.088*
H16B	0.4280	0.9619	0.0162	0.088*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0611 (13)	0.0951 (18)	0.0531 (14)	-0.0343 (13)	0.0319 (11)	-0.0154 (14)
O2	0.0523 (11)	0.0890 (17)	0.0424 (12)	-0.0224 (12)	0.0214 (9)	-0.0031 (12)
03	0.0544 (11)	0.0700 (15)	0.0532 (13)	-0.0115 (10)	0.0324 (10)	0.0023 (11)
O4	0.0605 (13)	0.0547 (13)	0.0710 (16)	-0.0134 (11)	0.0401 (12)	-0.0100 (12)
05	0.0583 (12)	0.0607 (14)	0.0762 (17)	-0.0088 (11)	0.0364 (12)	-0.0090 (13)
C1	0.0488 (17)	0.091 (2)	0.0528 (19)	-0.0159 (17)	0.0287 (15)	-0.0025 (19)
C2	0.0547 (19)	0.098 (3)	0.073 (3)	0.002 (2)	0.0372 (18)	0.007 (2)
C3	0.067 (2)	0.078 (3)	0.067 (2)	0.0031 (18)	0.0399 (19)	0.002 (2)
C4	0.0566 (17)	0.061 (2)	0.050 (2)	-0.0021 (15)	0.0237 (15)	0.0081 (16)
C5	0.073 (2)	0.056 (2)	0.055 (2)	-0.0097 (17)	0.0284 (18)	0.0009 (17)
C6	0.073 (2)	0.060 (2)	0.062 (2)	-0.0256 (18)	0.0282 (18)	-0.0002 (19)
C7	0.0589 (18)	0.068 (2)	0.065 (2)	-0.0213 (16)	0.0337 (17)	-0.0048 (18)
C8	0.0548 (17)	0.071 (2)	0.0455 (18)	-0.0178 (15)	0.0267 (15)	-0.0040 (17)
C9	0.0580 (18)	0.086 (2)	0.054 (2)	-0.0178 (17)	0.0354 (16)	-0.0146 (19)
C10	0.0571 (17)	0.068 (2)	0.074 (2)	-0.0143 (17)	0.0399 (17)	-0.020 (2)
C11	0.0509 (17)	0.0509 (17)	0.0500 (18)	-0.0146 (13)	0.0281 (15)	-0.0052 (14)
C12	0.0446 (14)	0.0619 (19)	0.0361 (15)	-0.0144 (13)	0.0183 (12)	-0.0016 (14)
C13	0.073 (2)	0.129 (4)	0.079 (3)	-0.044 (3)	0.046 (2)	-0.013 (3)
C14	0.116 (3)	0.066 (3)	0.100 (4)	-0.009 (2)	0.057 (3)	-0.013 (3)
C15	0.087 (3)	0.129 (4)	0.086 (3)	-0.030 (3)	0.063 (3)	-0.024 (3)
C16	0.071 (2)	0.0533 (19)	0.093 (3)	0.0042 (17)	0.043 (2)	-0.005 (2)

Geometric parameters (Å, °)

01—C1	1.412 (4)	С6—Н6В	0.9700
01—02	1.463 (3)	C7—C8	1.532 (4)
O2—C12	1.450 (3)	C7—H7A	0.9700
O3—C11	1.397 (3)	C7—H7B	0.9700
O3—C1	1.446 (4)	C8—C9	1.518 (5)
O4—C10	1.407 (4)	C8—C12	1.538 (4)
O4—C11	1.426 (4)	C8—H8	0.9800
O5—C10	1.416 (4)	C9—C10	1.508 (5)
O5—C16	1.421 (5)	C9—C15	1.528 (5)
C1—C13	1.502 (5)	С9—Н9	0.9800
C1—C2	1.516 (6)	C10—H10	0.9800
C2—C3	1.512 (6)	C11—C12	1.522 (4)
C2—H2A	0.9700	C11—H11	0.9800
C2—H2B	0.9700	C13—H13A	0.9600
C3—C4	1.532 (5)	C13—H13B	0.9600
С3—НЗА	0.9700	C13—H13C	0.9600
С3—Н3В	0.9700	C14—H14A	0.9600
C4—C5	1.539 (5)	C14—H14B	0.9600
C4—C12	1.544 (5)	C14—H14C	0.9600
C4—H4A	0.9800	C15—H15A	0.9600
C5—C6	1.515 (5)	C15—H15B	0.9600
C5—C14	1.525 (6)	C15—H15C	0.9600
С5—Н5	0.9800	C16—C16 ⁱ	1.504 (9)
C6—C7	1.504 (5)	C16—H16A	0.9700
С6—Н6А	0.9700	C16—H16B	0.9700
C1 O1 O2	100.0(2)	C7 C8 U8	106.5
C1 = 01 = 02	109.0(2) 112.1(2)	$C_{12} C_{8} H_{8}$	106.5
C12 - 02 - 01	112.1(2) 113.3(2)	$C_{12} - C_{3} - 113$	112.8 (3)
C10 04 C11	115.3(2) 115.2(2)	$C_{10} = C_{9} = C_{15}$	112.6(3)
C10-04-C16	113.2(2) 114.8(3)	$C_{8}^{-}C_{9}^{-}C_{15}^{-}$	114.6 (3)
01 - 01 - 03	1081(3)	$C_{10} - C_{9} - H_{9}$	105.6
01 - C1 - C13	104.9(3)	C_{8}	105.6
01 - 01 - 013 03 - 01 - 013	104.5(3)	C_{15} C_{9} H_{9}	105.6
01 - C1 - C2	100.5(3) 112.8(3)	04-C10-05	112 0 (3)
01 - 01 - 02 03 - 01 - 02	109.3(3)	04 - C10 - C9	112.0(3) 111.9(3)
C_{13} C_{1} C_{2}	109.5(3) 114.8(3)	05-010-09	1101(3)
$C_{3} - C_{2} - C_{1}$	114.0(3) 114.7(3)	O4-C10-H10	107.6
$C_3 = C_2 = H_2 A$	108.6	05-C10-H10	107.6
C1 - C2 - H2A	108.6	C9-C10-H10	107.6
C3 - C2 - H2B	108.6	03-C11-O4	105.4 (2)
C1 - C2 - H2B	108.6	03-C11-C12	1130(2)
H_{2A} C_{2} H_{2B}	107.6	04-C11-C12	112.8 (2)
C2-C3-C4	115.9 (3)	O3—C11—H11	108.5
С2—С3—Н3А	108.3	O4—C11—H11	108.5
С4—С3—НЗА	108.3	C12—C11—H11	108.5
С2—С3—Н3В	108.3	O2—C12—C11	109.4 (2)
C4—C3—H3B	108.3	02-C12-C8	104.6 (2)
			× /

НЗА—СЗ—НЗВ	107.4	C11—C12—C8	110.1 (2)
C3—C4—C5	111.3 (3)	O2—C12—C4	106.0 (2)
C3—C4—C12	113.0 (3)	C11—C12—C4	113.7 (2)
C5—C4—C12	114.5 (3)	C8—C12—C4	112.5 (2)
C3—C4—H4A	105.7	C1—C13—H13A	109.5
C5—C4—H4A	105.7	C1—C13—H13B	109.5
C12—C4—H4A	105.7	H13A—C13—H13B	109.5
C6—C5—C14	110.4 (3)	C1—C13—H13C	109.5
C6—C5—C4	110.7 (3)	H13A—C13—H13C	109.5
C14—C5—C4	111.3 (3)	H13B—C13—H13C	109.5
С6—С5—Н5	108.1	C5—C14—H14A	109.5
С14—С5—Н5	108.1	C5—C14—H14B	109.5
С4—С5—Н5	108.1	H14A—C14—H14B	109.5
C7—C6—C5	111.5 (3)	C5—C14—H14C	109.5
С7—С6—Н6А	109.3	H14A—C14—H14C	109.5
С5—С6—Н6А	109.3	H14B—C14—H14C	109.5
С7—С6—Н6В	109.3	С9—С15—Н15А	109.5
С5—С6—Н6В	109.3	С9—С15—Н15В	109.5
H6A—C6—H6B	108.0	H15A—C15—H15B	109.5
C6—C7—C8	111.5 (3)	С9—С15—Н15С	109.5
С6—С7—Н7А	109.3	H15A—C15—H15C	109.5
С8—С7—Н7А	109.3	H15B—C15—H15C	109.5
С6—С7—Н7В	109.3	O5—C16—C16 ⁱ	113.8 (3)
С8—С7—Н7В	109.3	O5—C16—H16A	108.8
H7A—C7—H7B	108.0	C16 ⁱ —C16—H16A	108.8
C9—C8—C7	114.6 (3)	O5—C16—H16B	108.8
C9—C8—C12	110.8 (3)	C16 ⁱ —C16—H16B	108.8
C7—C8—C12	111.3 (3)	H16A—C16—H16B	107.7
С9—С8—Н8	106.5		
C1—O1—O2—C12	-44.0 (3)	C8—C9—C10—O4	-51.6 (4)
O2—O1—C1—O3	72.2 (3)	C15—C9—C10—O4	177.6 (3)
O2-O1-C1-C13	-174.5 (3)	C8—C9—C10—O5	73.6 (3)
O2—O1—C1—C2	-48.8 (3)	C15—C9—C10—O5	-57.2 (4)
C11—O3—C1—O1	-31.6 (4)	C1O3C11O4	92.6 (3)
C11—O3—C1—C13	-143.8 (3)	C1—O3—C11—C12	-31.0 (4)
C11—O3—C1—C2	91.6 (3)	C10—O4—C11—O3	-180.0 (3)
O1—C1—C2—C3	94.4 (4)	C10-04-C11-C12	-56.3 (3)
O3—C1—C2—C3	-25.9 (4)	O1—O2—C12—C11	-17.4(3)
C13—C1—C2—C3	-145.5 (4)	O1—O2—C12—C8	-135.4 (2)
C1—C2—C3—C4	-56.7 (5)	O1—O2—C12—C4	105.6 (3)
C2—C3—C4—C5	168.8 (3)	O3—C11—C12—O2	57.2 (3)
C2—C3—C4—C12	38.4 (4)	O4—C11—C12—O2	-62.2 (3)
C3—C4—C5—C6	-179.1 (3)	O3—C11—C12—C8	171.6 (3)
C12—C4—C5—C6	-49.4 (4)	O4—C11—C12—C8	52.2 (3)
C3—C4—C5—C14	57.7 (4)	O3—C11—C12—C4	-61.0 (3)
C12—C4—C5—C14	-172.7 (3)	O4—C11—C12—C4	179.6 (2)
C14—C5—C6—C7	179.8 (3)	C9—C8—C12—O2	68.0 (3)
C4—C5—C6—C7	56.0 (4)	C7—C8—C12—O2	-163.2 (3)

C5—C6—C7—C8	-60.4 (4)	C9—C8—C12—C11	-49.4 (3)
C6—C7—C8—C9	-177.2 (3)	C7—C8—C12—C11	79.4 (3)
C6—C7—C8—C12	56.1 (4)	C9—C8—C12—C4	-177.4 (3)
C7—C8—C9—C10	-77.1 (3)	C7—C8—C12—C4	-48.6 (4)
C12—C8—C9—C10	49.9 (4)	C3—C4—C12—O2	-71.1 (3)
C7—C8—C9—C15	52.1 (4)	C5—C4—C12—O2	160.1 (3)
C12—C8—C9—C15	179.1 (3)	C3—C4—C12—C11	49.1 (4)
C11O4C10O5	-69.3 (4)	C5-C4-C12-C11	-79.8 (3)
C11-O4-C10-C9	54.9 (4)	C3—C4—C12—C8	175.2 (3)
C16—O5—C10—O4	-69.2 (4)	C5—C4—C12—C8	46.4 (4)
C16—O5—C10—C9	165.7 (3)	C10-05-C16-C16 ⁱ	92.8 (4)

Symmetry code: (i) -x+1, y, -z.